
SECURITY CLASSIFICATION OF THIS PAGE (men Data Entered)
ml

REPORT DOCUMENTATION PAGE RE^_ n_sTRucrto.sBEFORE COMPLETING FORM
|_"REPORT I_UMBER "" 2. GOVT ACCESSION NO, 3. RECII:'iENT'S CATALOG NUMBER

/tLGO PUB _124
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Optimal Fix Estimators and a Variation F_N/tL
on the Cramer WaD Lower _ound 6. PERFORMINGORG.REPORTNUMBER

D-4718
7. AUTHOR(o) 8. CONTRACT OR GRANT NUMBER(a)

Institute for Decision Sciences
Claremont McKenna College

WJtR7-CtlR
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

Jet Provulsion Laboratory, /tq'?N: 171-2_9
Callfornia tnstltute of Technology
48_g O_k Grove, Pasadena, C/t 91109 R_. 1A_ _M_._n t_"

I|. CONTROLI.INGOFFICE NAME AND ADDRESS 12. REPORT DATE

Commander, US/tICS _ ._n R?
ATTN: /t_SI-CD-SF Is. NUMBE,_OFPAOEg
Ft. flllachucaj AZ 8S613-7ee_ _ ...

14. MONITORING AGENCY NAME & ADDRESS('//dlllamt IrDm Control|ln#_ Olllca) IS. SECUR,TY--(_'LASS. (o! Ihll :'aporl)

Commander, US/tICS n_,',r Raa'r,:'r_
ATTN : A?ST-CD-SF "Is.. DECLASS'IltlCA'YI"O_ITI_FOll/I_OINGSCHEDULE

I_. DISTRIBUTION STATEMENT (ol Ibis Rep_#) ......

/approved for Public Dissemination

17. DISTRIBUTION STATEMENT (,-tf the abe/tact _mlemd In Block 20, II dlftsrenr from Rtp_t)

iII. SUPPLEMENTARY NOTES

Prepared by Jet Propulsion Laboratory for the US /trmy _ntelli-
genre Center and School's Combat Oeveloper's Support Facility.

19. KEY WORDS (Continue on reverse side il necessary _td Idenflly by block number)

O0timal Location Estimate, Weighted Mean Square, Generalized
Cramer Rao Lower Bound, sZ-biased F,stimators, Linearlzatlon,
Optlmal, Unlforml_ Minimum Variance Unbiased Zstlmator (UMVUE)

Via an appendix, the Cramer Rao lower bound is generalized: Of
all linear estimators of fix {le. two dimenslonal) error with
s2 bias, the Least Sauares estimator has the smallest error
e111pse. The report discusses the assumptions of error
indeDendence and the linearlzation of error model and correspond-
ing _mall errors. By combining this report with "?wo Dimensional
Uncorrelated Bias in Fix Mgorithms", D_C #/tD- /t189473, the
"best" fix alaorlthm is Minimization of S_u_red Ancml_r Rr_-r_-

IX) ,o., 1473 m.D. OF 1 NOV Ill I1_ OBSOLETEI JAM731

SECURITY CLASSIFICATION OF THIS PA,_+E (When Date Entered)

...............

] 9B9003840



7057-106

U.S. ARMY INTELLIGENCE CENTER AND SCHOOL

Software Analysis and Management System

Optimal Fix Estimators and a Variation
on the Cramer Rao Lower Bound

03 September 1987

Author:( " , _

Ins_e for Deei_', _ciences

J_es W./Gillls, .Subgr°up Leader Edward J. Records, Supervlsor
_lgorithm Analysls Subgroup USAMS Task

Concur: fi

c 'A. 'F'.E_m_n, Manage S

Grou_d,,_ata Systems _ection

Advanced Tactical Systems

JET PROPULSION LABORATORY

California Institute of Technology
Pasadena, California

JPL D-4718

1989003840-002



|

I
PREFACE

The work described in this publication was performed by the

Institute For Decision Sciences (IDS) under contract to the Jet

Propulsion Laboratory, an operating division of the California

Institute of Technology. This activity is sponsored by the Jet

Propulsion Laboratory under contract NAS7-913, RE182, A187 with the

National Aeronautics and Space Administration, for the United States

Army Intelligence Center and School.

This specific work was performed in accordance with the FY-87

statement of work (SOW #2).



CONTENTS

SUMMARY ........................ 1

I. OPTIMAL ESTIMATORS IN STATISTICS ........... 3

A. OPTIMALITY HAS NO UNIQUE DEFINITION ....... 3

B. BIAS ....................... 3

C . VARIANCE ..................... 3

D. UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATORS

AS OPTIMAL .................... 4

E. CRAMER RAO LOWER BOUND AS A MEANS OF FINDING UMVUEs 4

F. DIFFERENCES BETWEEN THE FIXING CASE AND THE

STANDARD CASE ................ . . 4

II. FIX MODELING ASSUMPTIONS ............... 5

A. BEARING ERROR DISTRIBUTION ............ 5

B. MINIMIZATION OF SQUARED ANGULAR ERROR ...... 5

C. SMALL ERRORS AND LINEARIZATION .......... 5

D. WEIGHTING TO ATTAIN OPTIMAL LINEARIZATION .... 6

E. ELLIPSE DEPENDENCY ON LINEARIZATION ....... 6

F. THE QUALITY OF THIS REPORT IS RELATIVE TO THE
LINEAR APPROXIMATION .............. 6

III. PROBLEMS WITH THE FIX MODELING ASSUMPTIONS ...... 7

A. BIAS RESULTING FROM THE NON-LINEAR TERMS ..... 7

B. BEARING SELECTION MODEL IMPACT .......... 7

C. DEPENDENT BEARINGS ................ 8

D. IS _ (ANGULAR ERROR STANDARD DEVIATION)
KNOWN OR UNKNOWN .................. 8

iv

1989003840-004



IV. OPTIMALITY TO WITHIN TERMS OF ORDER o ......... 8

A. BIAS OS OF ORDER _ ................ 8

B. CRAMER RAO LOWER BOUND CAN BE GENERALIZED .... 9

C. WHICH METHODS ARE ORDER o'OPTIMAL? ........ 9

D. THE 'BEST' ORDER o'OPTIMAL METHOD ........ i0

E. HOW SIGNIFICANT IS THE ALGORITHM INDUCED BIAS? . . i0

APPENDICES

A. MATH APPENDIX ..................... A-I

v

1989003840-005



r
SUMMARY

..... -_The fix estimators MARC (Mathematical Analysis Research Corponation) has

examined in fielded systems have a property which implies that these fix estimators

approach optimality. Explaining the meaning of this statement and the

qualifications that go with it is the purpose of the main body of this report. Proofs

needed are included in a Math Appendix. _-

A list/oi'_op;cs co-v-_e-d-[fi-'--_e individual sections of this report follows:

) QPTIMAL ESTIMATQRS IN STATISTICS ,_ !, )/
_ A. Optimality has no unique definition

/

B. Bias /
/Vari ceC. an

D. Uniformly Minimum Var_e Unbiased Estimators (UMVUEs) as

optimal. _J

E. Cramer Rao_L_wer Bound as a means of finding UMVUEs.

F. Differences between the fixing case and the standard case:

/_ the fixing case,
/

J 1. no unbiased estimators exist
/

2. bearing measurements are not identically distributed

3. estimating location involves determining more than one

parameter•

,,\

_-H-. _)FIX MODELING ASSUMPTIONS • ' ' _'

• Independent Normally distflbuted bearing error with common

standard deviation, o. "

B. Minimization of Squared Angular Error
C, Small errors and linearization

D, Discussion of weighting as means of linearizing optimally

1_:" Ellipse dependence on linearization

, F. Optimality being relative to the linearized model _. _"
/

.!?-I I_-.._"_PROBLEMS WITH FIX MODELING ASSUMPTIONS _ - _
TA. Bias resulting from the non-linear terms

B. Beating selection interfering with the fix modeling assumptions

C Possibility of dependent bearings

D. If o is known, then better models are possible
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OPTIMALITY TO WITHINTERMSOF ORD 2 r :_ . ,,_%,_ _d-_t'_'_'-_
/ - / ),

C-',_/ A. Bias is of ordero 2 " /
t

B. Cramer Rao Lower Bound result can be generalized to order 0 2

C Which methods are order a 2 optimal? /-,

D. Choosing the best order a 2 optimal method without considering dataj/-/
//storage and computation time.

E. How much does choosing the best order o 2 optimal _atter?

t' 1"f v,_.

/,,.
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I. OPTIMAL ESTIMATORS IN STATISTICS

A. Ootimalitv has no unique dcfinition

The estimatorwhich is _best'in any particularsituationdepends on

the nature of:

I) The information available to be used by the estimator.

2) The overall reward/penalty function which applies, considering the

variety of behaviors the estimator may exhibit and the applications

to be ma:le of it.

Analysis can only approximate these two considerations. What statistics

does do is identify measures of desirable behavior and the means of

optimizing these measures given idealized input.

B. Bias

Estimators produce different results depending on the nature of the

errors in the observations. The size of the error in the fix depends upon

chance. In practice, only one fix is made. It is useful however to imagine

averaging all of the fixes that chance might have produced. If these

potential fixes are weighted by the probability of their occurrence, then

one has the 'expected fix'. If the 'expected fix' turns out to be located at

the true emitter, then the estimator would be referred to as unbiased.

When the 'expected fix' turns out to be located away from the true emitter,

exactly how far apart these two points are becoriles an issue of concern.

In this case, the estimator is referred to as biased and the distance

between the points is called the bias.

Estimators used in practice are biased. The 'expected fix' is short in

range of the true for the most commonly used estimator. However, the

bias (distance short) is usually small (small in comparison with the

variance).

While bias is the distance between the 'expected fix' and the true

emitter, variance is a means of measuring the avei'age distance between

the 'expected fix' and individual estimates. If the variance of an

estimator is large, any confidence in the accuracy of the estimate is

limited. A small variance indicates an estimator which will consistently

give similar estimates. However, variance, does not include any measure

of the distance between the 'expected fix' and the true. It is quite possible
Uq

to have an estimator with s_all variance which estimates the location to I
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be a significant distance from the true position of the emitter owing to
bias.

D. Uniformly Minimum Variance Unbiased Estimators as optimal

As was mentioned above, there exists no unique definition of what

constitutes an optimal estimator. In part, when defining an ¢ptim"'

estimator, one must consider the constraints of available inform. :'Jn.

Estimates of both bias and variance fall within these constraints, _u_

minimizing only bias without considering variance (or vice-versa)

allows no control over the size of the variance. The optimal method, then,

with regards to both bias and variance, is to minimize both. Standard

practice has been io minimize the variance of an unbiased estimator, if

such an estimator can be found, if such an estimator exists, then it is

known as the uniformly minimum variance unbiased estimator (UMVUE).

E. Cramer Rao Lower Bound as a mean_ of finding UMVUE,_

The Cramer Rao Inequality provides a lower bound for the variance

of an unbiased estimator. Thus, in attempting to determine which is the

'best' unbiased estimator among the set of unbiased estimators, the Cramer

Rao Lower Eound can be utilized as a measure. Specifically, if the

variance of an unbiased estimator satisfies the Cramer Rao lower bound,

then that estimator can be said to have the minimum variance among

unbiased estimators (in other words, a UMVUE). Such an estimator would

then be optimal with regards to bias and variance.

F. Differences between the fixin_ case and the standard case

In our case,

1) There are no existing unbiased fix estimators. For the two LOB case,

it can be shown that when o 2 is unknown, it is not possible for an

estimator to be unbiased. For three or more LOBs, however, it has not

yet been resolved if an unbiased estimator can exist. Even so, the

authors of this report are unaware of any existing unbiased
estimators.

2) Bearing measurements are not identically distributed due to the fact

that they all have different means (exp-.cted values).

3) Usually, finding UMVUEs requires estimating only one parameter.

Yet, estimating location requires determining both an 'x' and a 'y'

parameter in order to estimate location.

4
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II. FIX MODELING ASSUMPTIONS

Optimality is measured against models and hence one must be careful

about modeling assumptions when discussing optimality.

A. Bearinf error distribution

The assumptions are:

I) Independence This means that the size and direction of a particular

bearing error does not influence the size and direction of another

bearing error. An example of where this assumption loses validity is

when error is induced by inaccurate dctcrminatlon of Truc North.

2) Normally distributed error with mean zero - Normality is not

absolutely reqisired. Symmetric error with mean zero is the most

important property of the normal distribution that is needed.

3) Common standard deviation - Knowledge about differences in the

standard deviations of different bearings should be used if available.

Unknown differences can be tolerated so long as the difference is

not too severe. Different signal to noise ratios at different sensors is

an example of what might signify a difference in angular error

standard deviation.

B. Minimization of Souared An_ular Error

This model assumes that the error is in the bearing angle as opposed

to the sensor location. Furthermo.-'e, in order to find the best fix, a score

is computed by taking the angular error and squaring it. Thus, a bearing

error three !ames as large would be nine times as bad. This is one of the

consequences of assuming normality. One 'wild' bearing (from another

emitter perhaps) can have a very large impact because of this

assumption. If a higher power were used, then outliers would determine

the fix estimate completely.

C. Small errors and linearization

Fix algorithms take advantage of the fact that angular error is small.

Linearization of angular error into spatial error is relatively accurate

because angular error is small. If this were not true, then:

1) Fixes would be very biased.
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2) The 'Weighted Perpendicular'method (the name used in MARC

reportsfor the most frequentlyused method of approximating

minimizationof angularerror)would not be a good approximationto the

Minimizationof Squared Angular Error Method which it is supposed to

behave like.

D. Weighting to attain optimal linearization

The 'Weighted Perpendicular' method ite_atively reweights data on

the basis of the latest estimate of the fix location. The limitations on

reweightings of updatc:l fixes is one of the major differences between

algorithms (limitations are caused by memory and speed limitations of the

computer). The objective of the reweighting is to obtain a solution in

terms of the best linearization of the angular error that can be found.

Not all algorithms are optimal in this reweighting sense because of

memory and speed limitations.

E. Hlli_se dependence on linearization

The ellipse comes from a quadratic form. Tha: quadratic form is

based on the covariance of a lincarization (in the sense of a Taylor Series

to the first derivative). If angular errors were not small, then the correct

family of curves to use to indicate error regions would be much more

difficult to manipulate.

F. The optimality of this reoort is relative to the linear approximation

The optimality of concern in this report is qualified. It will only

assert optimality to within a small second order term. This qualification

should be expected, however, as most of fix estimation theory is ba_ed on

the same qualification.

6
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III. P]_OBLEMS WITH THE FIX MODELING ASSUMPTIONS

A. Bias r_sulling from the non-linear terms

After reading the previous section, it should not be surprising that

non-linear terms are one of the major problems with fix modeling

assumptions. Bias is the most significant impact of r_on-linear terms. It is

the difference hetwcer ,/here you would expect a fix to be located on

average and where it really is. When non-linear terms are small, bias is

not noticeable. This is frequently the case. Nonetheless, bias does exist

for all methods except under very special circumstances. The direction

and size of bias can vary from method to method. For the "Weighted

Perpendicular' method with three or more bearings, bias can be shown to

point short along the range. For other methods, bias can he long.

One of the disadvantages of the 'Weighted Perpendicular' method is

that bias does not necessarily get smaller as the sample size increases. In

fact, bias may even increase with sample size. If a large amount of data is

going to he used in a fix, there are better methods. Unfortunately, the

other methods require storing all of this data.

B. BeaHn_ selection model imoaet

Bearing selection is not part of the fix model as used by the Army

systems reviewed by MARC. Other models, such as those which add a

uniform background to a truncated normal, may reflect bearing selection

issues but MARC has not investigated this aspect of the question. It is

clear, however, that bearing selection -an interfere with the assumption

of normality. There are many possible lepcrcussions of this loss. For

example, minimizing the squared error may not be optimal.

1989003840-012



m

C. Dependep, t bearings

If bearing errors are dependent on one another (for reasons such as

a shared error in determination of True North), then fix errors should be

expected to be larger than normally predi:ted. If the dependence is

strong enough, then an optimal model would attempt to account for this

dependence.

D. Is o ('Aneular Error Standard Deviation) known or unknown

The current models are ambiguous with respect to knowing a 2. If o 2

is known, then it would be possible to correct for fix algorithm induced

bias. Even a known lower bound would yield a lower bound correction.

The correction would be suspect if a 2 is not constant across bearings,

however. The methods of o 2 determination that have been reviewed by

the authors of this report raise more questions about underlying models

than they resolve.

IV. OPTIMALITYTO WITHINTERMSOFORDER_2

A. Bias is of order o 2

Showing that bias must be of at least order o 2 (when 0 2 is unknown)

for particular algorithms is simple. Showing it for all algorithms in

general is less so. The two bearing case, however, can be shown to be of

order a 2 for all algorithms. Correcting for the bias of the intersection

(the two bearing case) depends on knowing a 2 and 0 2 cannot even be

estimated using two bearings. Since o 2 can be estimated with three or

more bearings, it seems possible that there might be an order o 4

algorithm that could be constructed in these cases. The authors of this

report know of no such algorithms in use. Problems in the estimation of

8

.......................................................................... :-7_±_
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0 2 suggest to the authors of this report that such algorithms would have

limited application in any case. Ik

Since bias of order o 2 exists in most, if not all, fielded systems, it

|seems reasonable to ask whether fix algorithms are optimal to within a

term of order 0 2. That is the purpose of this report. Finding the method

with the smallest order o 2 term is a reasonable follow-up question. This

question has already been addressed in part for a broad class of fix

algorithms in MARC's Two Dimensional Uncorrelated Bias in Fix

ALg_r.ilh/_ (12 March 87).

E. Cramer Rao Lower Bound can be generalized

The Cramer Rao Lower Bound is a theorem which gives a bound on

how accurate an unbiased estimator can be (where accuracy is measured

by the size of the variance). Since there are no unbiased estimators, a

generalization of the Cramcr Rao Lower Bound is needed. Such a

generalization is derived in the Math Appendix. The differences between

our version of the Cramer Rao Lower Bound and versions found in Wilk's

Mathematical Statistics are :

1) The result in this report is for order o 2 biased estimators.

2) The result in this report is for 2-dimensional estimators instead

of one-dimensional estimators. (A partial result for n-

dimensional estimators is also in this report.)

C. Which methods are order o 2 ontimal?

All fielded systems that MARC has reviewed are order o 2 optiraal. The

only theoretical method which MARC has examined which is not optimal

to within order 0 2 is the unweighted version of the Perpendicular

Method. The variance of all other methods are essentially the same.

1989003840-014



D. The 'best' order 0 2 optimal method

There is a difference in the order o 2 term of various methods. The

impact of this order o 2 term on bias is much more important than its

impact on the variance. Minimization of Squared Angular Error and

methods similar to it have a smaller order o 2 bias than the more

commonly used Weighted Perpendicular Method.

Both the Minimization of Squared Angular Error and Weighted

Perpendicular Methods can only be used in their intended form as long as

bearings are saved. Afte: eliminating bearings, both methods must give

way to the suboptimal version of the Weighted Perpendicular. Therefore,

the only justifications for use of the Weighted Perpendicular are greater

simplicity in the coding of the algorithm and simplicity of computation.

The Weighted Perpendicular method also generalizes easily to a 3-

dimensional method.

E. How significant is the al_orithm induced bias?

It depends on:

1) Sensor accuracy (With very accurate bearings, the bias is

insignificant).

2) The number of bearings kept before using the suboptimal

approach. With two bearings, there is no difference. With

four or more bearings, the difference is of more interest.

3) The range of compass headings over which bearings are

taken (excluding bearings taken from much further away

than the nearest sensors to the emitter). If the range is too

small, then bias can be very significant.

• Furthermore, if error originates from other sources than bearing I11

I0
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accuracy such as sensor location error, then both Weighted Perpendicular
4

and Minimization of Angular Error are less than optimal. It is this last

• consideration that has led the authors of this report to conclude that

changing from Weighted Perpendicular to Minimization of Squared

Angular Error need only be of concern where location estimates can be

shown to have been short in range on average (This i.s the form of bias

which the Weighted Perpendicular exhibits). Even in this case, there may

be other causes besides the difference between these two algorithms.

11
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MATH APPENDIX

DEFINITIONS:

Let ei - ith piece of observed data (bearing from sensor I
in our application).

Let (sl,...,_n) be the true location in n-space (of the emitter in

our application).

Let (X1,X2,...,Xn) - (X1(81,82,...,Sm),...,Xn(81,82,...,Sm)).

Let (X],...,Xn) be estimators of (_1,...,_n) such that

E{(XI,...,Xn)] - (a1,...,an) + (O(o2),...,O(a2))

where O(h(o)) is such that, k - O(h(o)) means that as o approaches

some limit, k(o) is dominated by some positive constant multiple

of h(o). (See Olmsted, John M., Real Variables , Apple Century
Crofts, Inc., 1956, pg. 169)

Let f(B1,...,Bm;(e1,...,=n)) be the probability density function of the

continuous random variable 8.

Let D denote a directional derivative in the direction (ul,...,Un).

Let L - -log(f) with (_1,...,_n) evaluated at (X1,...,Xn) as the defininE

equation for the (X1,...Xn) vector (i.e. Minimize L or determine

the critical polnt(s) of L with respect to (X1,...,Xn)).

Let S = Dlog(f).

Let COV - Cov(Xl,...,Xn).

Let MSEij - E{(Xi-_i)(XJ-sO)} - Mean Squared Error.

The above definitions are utilized in seven important and interrelated

results.

RESULT#1

COY = MSE + 0(o4)

Proof:

COVIj - E{(Xi-E[Xi])(XJ-E[XJ]))

- E{(Xi-_i+E[Xi-_i])(XJ-sJ+E[XJ-ej])]

- E{(Xi-_i)(Xj-_J)} + E{(Xi-_i)E[Xj-_j]} + ... + E_Xi-_I}E{XJ-_j}
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-2-

= MSEIj + 0(04 )

RESULT#2

The directional variance satisfies

(UI,...,U n) MSE (u1,...,un)T Z 1+0(o 2)
E{CS)z}

Equality holds if

u.(X1-a1,X2-e2,...,Xn-=n) is proportional to S

Proof:

b
D(O(c2),...,0(o2))

(ul,...,u n) - D(al,...,an) = DI...I (xl,...,xn) f +

- DI...I (xl,...,xn) f - (al,...,an)Dl...l f

+ (0(o2),...,0(o2))

= I...I (xl,...,xn) D[f]- (_1,...,_n)l...l D[f]

. (0(o2),...,0(o2))

" I...I [(xl,...,xn)-(_1,...,an)] D[f] + (0(o2),...,0(o2))

- E{[(X1,...,Xn)-(al,...,an)](S)] + (0(02),...,0(02))

Taking the dot product on both sides with (u1,...,u n) and squaring,

l(u1,...,Un).(u1,...,Un) + 0(o2)12

- [E{[(Ul,...,Un)(X1-al,...,Xn-an)](S)}]2

Now, by the Cauchy-Schwarz inequality

l(Ul,...,Un).(u1,...,Un) + 0(02)12

$ E{[(u1,...,Un)(Xl-al,...,Xn-an)]2]E{(S)2}

= (Ul,...,u n) MSE (Ul,...,un)T E{(S) 2}

DEFINITIONS AND ASSUMPTIONS APPLYING TO THE NORMAL CASE:

Assume the 8i are independently Normally distributed with mean ,

ei(a1,...,an) and standard deviation, 02.

Further, assume that the function associated with the mean above may be

computed at the estimate, i.e. 8i(X1,...,Xn).

1989003840-018



Finally, assume that Xi evaluated at (u1,...,an) is ai (i.e. The true

parameter is computed if there is no 'observation error' and the

mean observation is the no error case)•
p

Let ¢I " 8i - ei(=1'''''an)" In some cases, this may be interpreted as

error.

Let gi(el...en)=Xi(81,82...Sn)=Xi(e1+81(el...an),...,en+Sn(al...an))

gi,ekdenotes the partial derivative with respect to ¢k evaluated at

¢i=0 for all i.

8i,aj denotes the partial derivative with respect to aJ.

MSE L represents the Mean Standard Error matrix for the Least Squares

approach (i.e. Minimizing $2).

TAYLOR SERIES EXPANSION

Expanding {g1(c1,e2,...,em),...,gn(e1,e2,...,Cm)}

= (el'••''en)+Z[gl '•'''gn ]¢i +ZIO(eiej)"'¢i '¢i

RESULT#3

Let 8i have an independent Normal distribution with mean, ei(sl,...,an)

and variance, 02 .

(Si,al)2 ... el,a18i,an

S{(S) 2} = [I/o23 Z [u1•..u n] : " • _ Jut••. un]T

8i,anel,al ... (_i,_n)2

Proof:

S = Z{([ei-ei(a1...an)]/o2)ei,al uI - ...

+ E{([ei-ei(al...an)],o2)ei,an un

= _{([ei-ei(a1...an)]/o2)(ei,al uI + ... + el,an Un)}

Therefore,
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E{(S)2}

= E{ZZ[ei/o2][cj/o23[ei,al u1+ ... + el,an Un][ej,al u1+ ... + ej,_n Un]}

= [I/o4][ZZE{(¢i_j)(ei,al uI + ... + ei,_n Un)(ej,al uI + ... + ej,an Un)}]

= [I/o2][z(ei,al uI + ... + el,an Un)(ei,al uI + ... + ei,an Un)]

RESULT#4

Let ei have an independent Normal distribution with mean, ei(al,...,=n)

and variance, o2.

)2 ei,_lei,an -I(ei,al ...

MSEL = [02] Z : • • : + 0(04)

ei,alei,an ... (el,an)2

Proof:

L = z(ei-ei(x1..xn))2/(2o_) + (n/2)ln(2_e2)

Recall that gk,elis evaluated at the true location•

The Mean Standard Error matrix is by definition

(XI-al)2 ... (XI-Q1)(Xn-an)

MSE = E{ . . . }

(X1-_1)(Xn-an) ... (X1-an)2

,-..,gn,¢i ,..., ¢j)eicj" E{ZZ(gI,¢i )T(g1,ej gn, } + 0(04)

" Z(gl '''''gn )T(gl "'''gn,¢i'¢1 '¢i '¢i' )02 + 0(04)

Recall that (gl,...,gn) are the (XI,...,Xn) determined where LX1=...= Lxn=O.

Differentiating the defining equations with respect to ¢i
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i+Lx1 "

LxI-O ... Lxn-O --=> dLxl/d_i= Lx1xlgl,ci +...+LX1XnEn,¢ el 0

- ci+Lxnz - 0dLxn/dEi Lxnx1g1'¢i +.''+LxnXngn' i

-I

gl, ¢i LXI XI """ LXI Xn LXI ¢i

gn,¢ i LXIXn -.. LXnXn Lxn¢i

LXj "t_?C-2)CSt,xj)CstCXl,...,Xn)-et)/(2o=)

LXjXk "t_?(-2)[(St,Xj)(et,Xk)*(et,XjXk)(St(Xl,"',Xn)-et )]/(2°=)

-t_?(-2)(et,Xj)(et,Xk)/(2o=) (Recall that el-O)

Since, (2o')Lxj -t_(-2)(Bt,Xj)[Bt(X1,...,Xn)-Bt(_1,...,_n) .,_n)-St]

"t_?(-2)(St,Xj)[St(X1,--.,Xn)-St(_1,.--,an)] +t_12(St,Xj)Ct

LxJ¢i = -2ei,Xj /(2o =)

Therefore,

2Z )2 2Z(et,X1)(et,Xn) -I 2ei,X1
El '¢i (8t'X1 "'"

gn,¢ i 2Z(et,Xn)(et,X1) ... 2z(et,xn )2 2ei,Xn

Thus,

,..., )T(gI ...
(El'el gn'¢i '¢i' 'g1'¢i)

(ei,Xl)2 ... (ei,Xl) (8i,Xn) 1-I

I

I

(ei,Xn)(ei,X1) "" (ei,xr,)2 I
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However, El is evaluated at the true, which when done produces the desired

result

)2 (6i,al)(Si,an) -I(ei,al ...

(ei,an)(ei,al) ..- (el,an)2

RESULT#5

1 + 0(o 2)

_> MSE (_>)T _ _> MSE_I (_>)T where _> = (ul,u2,...,u n)

Proof:

From Result # 2

(Ul,...,un) MSE (Ul,...,Un)T _ I+0(o2)
E{(S)2}

F-om Result # 3

)2 el,ale I

(8i,a1 ... i,an
E{(S)2}=[I/o2]Z [u1"''Un] ! " " " l[u1"'"

uniT

ei,anel,al ... (8i,an)21

From Result # 4

)2 -I
(el,al -.. ei,alei,an

MSEL - [02] Z ! " • . ! + 0(04 )

ei,a18i,_n ... (el,_n)2

RESULT#6

Maximum eigenvalue of MSEL $ Maximum eigenvalue for other methods

Proof:

Let tL be the maximum eigenvalue of the L method•

Let tother be the maximum eigenvalue of some method,

V
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Let _> be the eigenvector associated with AL"

i
I I

_> MSE_I (_>)T I/AL

From Result # 5, it follows that

AL _ _> MSEother(_>)T

Finally, since MSEothe r is a positive definite matrix, _>MSEother(_>)T is

between the minimum and minimum eiEenvalues for MSEothe r. Thus,

AL $ Aother

RESULT#7

Minimum eigenvalue of MSE L $ Minlmum eigenvalue for other methods

Proof:

Let Xothe r be the minimum eiEenvalue of some method.

Let XL be the minimum eigenvalue of the L method.

Let _> be the eiEenvector associated with Aothe r.

I

XL "

1/X L

1

max _> MSE_ I (_>)T

_> (V>)T Recall Result # 5
MSEothe r - Aothe r

Therefore,

XL $ Aothe r

Observations - Comparin8 error ellipses between the L and any other estimator
at the same confidence level we note:

I) The larEest axis of the L error ellipse is smaller than the

larsest axis of the other estimator.
2) The smallest axis of the L error ellipse is smaller than the

smallest axis of the other estimator.

3) If one is only in two dimensions, I) and 2) are enough to imply that

• I
the L error ellipse is smaller in size.

1989003840-023



8= |
In n dimensions, Intermediate axes must also be considered In any discussion
of error ellipse size, thus I) and 2) are not sufficient to show that the L

error ellipse Is smaller In the general cas_.

k

1989003840-024


